过去10年,人工智能(AI)技术深刻影响了人类社会,也在逐渐改变许多学科的研究范式。在科学计算的诸多领域存在待求解的问题机理不清楚,或者虽然问题具有明确的机理,但由于过于复杂以至于传统算法难以求解的困难。AI技术,特别是机器学习和强化学习方法,基于实验或者计算产生的数据对所求解的问题进行可计算建模,从而得到复杂问题的有效解决方式,这对当今科学计算领域的研究范式已经产生了巨大影响。与此同时,以深度学习为代表的AI在内部机理、数学理论、基础算法等方面尚不清楚、不完善,AI方法的稳健性、精确度等尚缺乏严格的数学论证,这正对其进一步发展造成严重阻碍。然而,结合机理的思维方式将有可能对面向数据的AI技术,提供新的洞见与研究途径。因此,AI与科学计算的结合,势必会推动两个领域的共同发展。
本期“AI+科学计算”Webinar 汇集计算数学、科学计算及超大规模计算等领域的交叉研究学者,从“AI for Scientific Computing”和“Scientific Computing for AI”两个视角进行前沿讨论,以期能碰撞出创新的思想之火花。
主题内容
- 科学计算的现状和挑战
- 科学计算与人工智能融合的价值、研究的路径和案例
- 科学计算与人工智能融合的未来发展方向
讨论议题
- ML+SC目前还是有很多质疑,我们自己估计也有质疑,主要是ML的学科特点和SC不同,关注的点也不同,那样怎样的ML+SC的工作才算是好的工作,要做到什么程度?
- 对ML感兴趣的如何运用SC的技术来解决ML的问题,哪些是最适合的问题?
- 从事SC研究的人如何入手ML,怎么甄别自己的问题哪些环节适合用ML来解决?
- 从产业界的角度,高性能计算与人工智能融合有什么应用路径和价值?
- 对于ML+SC的学生培养,有什么给学生的建议?
(ML=Machine Learning; SC=Scientific Computation)
报告摘要
《智能时代的科学计算:低维表达与高维问题的自然融合》——李若
经典的科学计算在过去的半个多世纪彻底改变了科学研究和科学本身的面貌,这些成就激励人们不断去挑战更为本质的困难,其中一个典型的代表就是高维问题的求解,基于计算技术本身所发展起来的大数据相关技术为高维问题的求解提供了新的契机。从逼近论的角度来看,各种神经网络从大图景上就是为高维的函数给了一种低维的表达方式。种种迹象表明,此种表达方式具有极高的有效性和逼真度,竟可以使人们模糊地对其产生智能的感觉。我试图在报告中描述使用如此智能的低维表达技术来求解高维的科学计算问题的大致途径,相信我们都乐见在不久的将来可以实现高维问题的求解技术和智能的低维表达技术的自然融合。
《浅论超级计算、人工智能与科学计算的融合发展:以偏微分方程求解为例》——杨超
近年来,超级计算机的计算能力不断突飞猛进,为科学计算和人工智能领域的诸多难题的解决提供了强大的算力支撑。与此同时,科学计算和人工智能的发展也对超级计算机的研制产生了深刻影响。科学计算一般以准确的数学模型为根基,以严谨的计算方法为手段,对应用领域中气候气象、能源材料、航空航天、生物医药等问题进行模拟。而人工智能则往往依赖于以神经网络为代表的具有“万能逼近”性质的数学工具从数据中挖掘规律,从而在图像处理等类型的任务上实现超越人类水准的突破。超级计算、人工智能与科学计算这三个蓬勃发展的领域是否可能实现某种程度的结合甚至融合?我将试图以偏微分方程求解为例,分享我们在这一方向上的一些思考。
《多尺度问题:科学计算+人工智能Crack the Multiscale Problem: Scientific Computing + Artificial Intelligence》——明平兵
自然界中诸多现象如材料损伤与破坏、流体湍流、核爆炸过程、生物大分子等均呈现出巨大的尺度效应, 并伴随着不同尺度上的物理多样性和强耦合性以及多个时间与空间尺度的强关联。这些典型的多尺度问题的求解一直是非常有挑战性的课题。科学计算曾经并正在为求解多尺度问题发挥重要作用,但目前也碰到了瓶颈。人工智能为解决多尺度问题提出了新的思路。本报告试图从科学计算与人工智能的融合角度出发阐述针对多尺度问题新的求解途径。
《基于流形和偏微分方程的机器学习数学模型》——史作强
机器学习尤其是深度学习近年来取得了巨大的成功,深度学习的数学模型和理论已经成为应用数学研究的热点课题。我们将从微分流形和偏微分方程的角度对机器学习建立数学模型,尝试建立可解释、具有内在鲁棒性的数学模型和理论,并发展相应的计算方法。
主持嘉宾
董彬 未来论坛青创联盟成员,北京大学北京国际数学研究中心长聘副教授
董彬,北京大学,北京国际数学研究中心长聘副教授、助理主任,北京大学人工智能研究院数理基础中心主任。2003年本科毕业于北京大学数学科学学院、2005年在新加坡国立大学数学系获得硕士学位、2009年在美国加州大学洛杉矶分校数学系获得博士学位。博士毕业后曾在美国加州大学圣迭戈分校数学系任访问助理教授、2011-2014年在美国亚利桑那大学数学系任助理教授,2014年底入职北京大学。主要研究领域为应用调和分析、反问题计算、深度学习及其在图像和数据科学中的应用。在国际重要学术期刊和会议上发表论文60余篇,现任期刊《Inverse Problems and Imaging》编委。2014年获得香港求是基金会颁发的求是杰出青年学者奖,2019年入选北京智源人工智能研究院“智源学者”。
主讲嘉宾
李若 北京大学教授
李若,博士毕业于北京大学数学科学学院,现为该院教育部长江特聘教授,博士生导师,副院长。研究方向为偏微分方程数值解,具体是网格自适应方法和流体力学数值方法,解决了已经存在了六十余年的Grad矩模型双曲性缺失的问题。他是第九届国际工业与应用数学大会报告人,获得第十二届冯康科学计算奖、国家杰出青年基金、全国百篇优秀博士论文奖,入选教育部新世纪人才计划。他曾经或正在担任SISC、NMTMA、AAMM编委,《数值计算与计算机应用》副主编,北京计算数学学会理事长、监事长,中国数学会计算数学分会副主任委员,教育部数学类专业教指委副主任,北京大学科学与工程计算中心主任、应用物理与技术中心副主任。
明平兵 中国科学院数学与系统科学研究院研究员
2000年博士毕业于中国科学院数学与系统科学研究院,目前是该院研究员并担任科学与工程计算国家重点实验室副主任。主要从事计算数学及科学计算的研究,特别是固体多尺度建模、模拟及多尺度算法的研究。他预测了石墨烯的理想强度并在Cauchy-Born法则的数学理论、拟连续体方法的稳定性方面有较为系统的工作。他在JAMS, CPAM, ARMA, PRB, SINUM, Math. Comp. Numer. Math, MMS. 等国际著名学术期刊上发表学术论文五十余篇。他曾应邀在SCADE2009,The SIAM Mathematics Aspects of Materials Science 2016等会议上作大会报告。他于2014年获得国家杰出青年基金,2019年入选北京智源人工智能研究院“智源学者”。
史作强 清华大学数学科学系副教授
从事偏微分方程数值方法的研究,对于基于偏微分方程的机器学习的数学模型、理论和算法有深入的研究。在国内外知名学术期刊发表文章40余篇,2019年入选北京智源人工智能研究院"智源学者"。
杨超 北京大学教授
杨超,北京大学数学科学学院教授,博士生导师。主要从事与超大规模并行计算相关的模型、算法、软件和应用研究,研究领域涉及计算数学、计算机科学与应用领域的交叉。研究成果曾先后获2012年中国科学院卢嘉锡青年人才奖、2016年美国计算机学会“戈登·贝尔”奖 (ACM Gordon Bell Prize)、2017年中国科学院杰出科技成就奖、2017年CCF-IEEE CS青年科学家奖等,2019年入选北京智源人工智能研究院“智源学者”。目前担任北京大学科学与工程计算中心副主任,中国科学院软件研究所学术/学位委员会委员,中国工业与应用数学学会“高性能计算与数学软件”专业委员会副主任兼秘书长,中国新一代人工智能产业技术创新战略联盟“AI指令集与开发接口”标准专题组组长等职务。
讨论嘉宾
孙纬武 联科集团创办人兼首席执行官,美国华盛顿大学终身教授,香港中文大学荣誉教授
孙纬武博士,自美国加州理工学院博士毕业后,在海外投身教学科研二十余载,现为美国华盛顿大学理论物理学终身教授及香港中文大学荣誉教授。 2000年创办联科集团,任首席执行官至今。孙博士在计算技术领域有超过30年经验。从90年代开始,领导多个跨国超级计算项目,研究相对论天体物理学。在孙博士的领导下,联科集团迄今已为数百家国家级机构及公司提供高性能计算、大数据基础设施和分析、以及人工智能解决方案。
熊涛 未来论坛青创联盟成员,厦门大学数学学院教授
熊涛,厦门大学数学科学学院教授,博士生导师,主要从事计算流体力学和动理学方程高精度数值方法的研究。2007年和2012年本科和博士毕业于中国科学技术大学。2015年入职厦门大学。获欧盟2015年度玛丽居里学者,2016年至2018年在法国图卢兹第三大学从事访问合作研究。